数学必修四知识点(15篇)
在我们平凡无奇的学生时代,是不是经常追着老师要知识点?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。你知道哪些知识点是真正对我们有帮助的吗?以下是小编整理的数学必修四知识点,欢迎大家借鉴与参考,希望对大家有所帮助。
数学必修四知识点1问题提出
函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系.
在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?
我们不能通过一个人的数学成绩是多少就准确地断定其物理成绩能达到多少,学习兴趣、学习时间、教学水平等,也是影响物理成绩的一些因素,但这两个变量是有一定关系的,它们之间是一种不确定性的关系.类似于这样的两个变量之间的关系,有必要从理论上作些探讨,如果能通过数学成绩对物理成绩进行合理估计,将有着非常重要的现实意义.
知识探究(一):变量之间的相关关系
思考1:考察下列问题中两个变量之间的关系:
(1)商品销售收入与广告支出经费;
(2)粮食产量与施肥量;
(3)人体内的脂肪含量与年龄.
这些问题中两个变量之间的关系是函数关系吗?
思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?
思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?
自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.
1、球的体积和球的半径具有()
A函数关系B相关关系
C不确定关系D无任何关系
2、下列两个变量之间的关系不是
函数关系的是()
A角的度数和正弦值
B速度一定时,距离和时间的关系
C正方体的棱长和体积
D日照时间和水稻的亩产量AD练:知识探究(二):散点图
【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:
其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.
思考1:对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?
思考2:为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?
思考3:上图叫做散点图,你能描述一下散点图的含义吗?
在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.
思考4:观察散点图的大致趋势,人的年龄的'与人体脂肪含量具有什么相关关系?
思考5:在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.一般地,如果两个变量成正相关,那么这两个变量的变化趋势如何?
思考6:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点?
一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右下角的区域.
一般情况下两个变量之间的相关关系成正相关或负相关,类似于函数的单调性.
知识探究(一):回归直线
思考1:一组样本数据的平均数是样本数据的中心,那么散点图中样本点的中心如何确定?它一定是散点图中的点吗?
思考2:在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?
这些点大致分布在一条直线附近.
思考3:如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.对具有线性相关关系的两个变量,其回归直线一定通过样本点的中心吗?
思考4:对一组具有线性相关关系的样本数据,你认为其回归直线是一条还是几条?
思考5:在样本数据的散点图中,能否用直尺准确画出回归直线?借助计算机怎样画出回归直线?
知识探究(二):回归方程
在直角坐标系中,任何一条直线都有相应的方程,回归直线的方程称为回归方程.对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,那么我们就可以比较具体、清楚地了解两个相关变量的内在联系,并根据回归方程对总体进行估计.
思考1:回归直线与散点图中各点的位置应具有怎样的关系?
整体上最接近
思考2:对于求回归直线方程,你有哪些想法?
思考4:为了从整体上反映n个样本数据与回归直线的接近程度,你认为选用哪个数量关系来刻画比较合适%某小卖部为了了解热茶销售量与气温
之间的关系,随机统计并制作了某6天
卖出热茶的杯数与当天气温的对照表:
如果某天的气温是-50C,你能根据这些
数据预测这天小卖部卖出热茶的杯数吗?
实例探究
为了了解热茶销量与
气温的大致关系,我们
以横坐标x表示气温,
纵坐标y表示热茶销量,
建立直角坐标系.将表
中数据构成的6个数对
表示的点在坐标系内
标出,得到下图。
你发现这些点有什么规律?
今后我们称这样的图为散点图(scatterplot).
建构数学
所以,我们用类似于估计平均数时的
思想,考虑离差的平方和
当x=-5时,热茶销量约为66杯
线性回归方程:
一般地,设有n个观察数据如下:当a,b使三点(3,10),(7,20),(11,24)的
线性回归方程是()
二、求线性回归方程
例2:观察两相关变量得如下表:
求两变量间的回归方程解1:列表:
阅读课本P7 ……此处隐藏12656个字……若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
三、向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。
四、必修四数学学习方法
数学不是靠老师教会的,而是在老师的`引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
要建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再 犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
五、必修四数学学习技巧
首先:课前复习。就是上课前花两三分钟把书本本节课要学的内容看一遍。仅仅是看一遍,过一遍。这样上课老师讲自己不但可以跟上老师节奏还可以再次巩固。其余不要干其他多余的事。
其次:上课时候一定要专心听讲,如果觉得老师这里讲得都懂了的话可以自己翻书看后面的内容。做习题的时候一定要一道一道往过做,不要越题做。因为对于课本来说这些都是基础,只有基础完全掌握后才能做难题。上课过程中第一次接触到的知识点概念等,一定一定要当堂背过。不然以后很难背过,不要妄想考前抱佛教再背
另外要把笔记记准确,知道自己需要记什么不需要记什么,憋一个劲地往书上搬。字不要求整齐,自己能看懂就行。课本资料书上有例题,多看多记方法。先看课本基础,在看资料书上着重的。例题的方法一定一定要理解,不要去背!接着下课再看笔记,只是略微巩固记住。
数学必修四知识点15基本初等函数有哪些
基本初等函数包括以下几种:
(1)常数函数y = c( c为常数)
(2)幂函数y = x^a( a为常数)
(3)指数函数y = a^x(a>0, a≠1)
(4)对数函数y =log(a) x(a>0, a≠1,真数x>0)
(5)三角函数以及反三角函数(如正弦函数:y =sinx反正弦函数:y = arcsin x等)
基本初等函数性质是什么
幂函数
形如y=x^a的函数,式中a为实常数。
指数函数
形如y=a^x的函数,式中a为不等于1的正常数。
对数函数
指数函数的反函数,记作y=loga a x,式中a为不等于1的正常数。指数函数与对数函数之间成立关系式,loga ax=x。
三角函数
即正弦函数y=sinx,余弦函数y=cosx,正切函数y=tanx,余切函数y=cotx,正割函数y=secx,余割函数y=cscx(见三角学)。
反三角函数
三角函数的反函数——反正弦函数y = arc sinx,反余弦函数y=arc cosx (-1≤x≤1,初等函数0≤y≤π),反正切函数y=arc tanx,反余切函数y = arc cotx(-∞
学习数学小窍门
建立数学纠错本。
把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
限时训练。
可以找一组题(比如10道选择题),争取限定一个时间完成;也可以找1道大题,限时完成。这主要是创设一种考试情境,检验自己在紧张状态下的思维水平。
调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。
数学函数的值域与最值知识点
1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:
(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.
(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.
(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.
(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.
(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.
(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的.单调性,可采用单调性法求出函数的值域.
(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.
2、求函数的最值与值域的区别和联系
求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.
如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.
3、函数的最值在实际问题中的应用
函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.
文档为doc格式